Bilkent University

EnhléaEsll\ﬂ' Department of Computer Engineering

Senior Design Project

Etymon: A Deep-Learning Application for Etymological Clustering
of Words

Analysis Report

Nashiha Ahmed, Mert Inan, Cholpon Mambetova, Utku Uckun

Supervisor: Prof. Mehmet Koyutilirk
Jury Members: Prof. Ugur Dogrusoz and Prof. Varol Akman

Analysis Report
Nov 6, 2017

This report is submitted to the Department of Computer Engineering of Bilkent University
in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents

Introduction

Proposed System

Overview

Definitions

Functional Requirements

Non-functional Requirements
Performance
Correctness

Pseudo Requirements

System Models
Use Case Model
Visionary Real-Life Scenarios
Use Case Descriptions
Dynamic Model
Object & Class Model
User Interface

References

w

v 1 g1 1 A W W W

O N o O

N N =
N = O

N
N

Analysis Report

Etymon: A Deep-Learning Application for Etymological Clustering of Words

1. Introduction

Etymgn is an analysis and tracing tool for word origins in all languages. It will be used to
review current etymological language families and if possible find new connections that
were not already present in current taxonomy. It will accomplish this using a deep learning
approach.

In the following sections, a brief description of the system and the system requirements
are discussed. In addition, Etymgn’s system models are also detailed.

2. Proposed System
2.1, Overview

Etymgn will be a system that contains three main components: deep-learning,
augmented-reality with object recognition, and generative dreaming.

Etymgn bases most of its functionalities on the etymological map that will be generated by
the deep learning algorithm. The program will collect most of its data about words from
online resources and it will cluster the words according to criterias set by the us.

The augmented reality with object recognition component is an auxiliary component. Its
purpose is to enable extra functionalities such as using your mobile phone camera with
augmented reality or upload a picture to Etymgn webpage and the program will
automatically search the name of the object in the scene or in the image.

Generative dreaming/ Hallucination component uses word clouds to generate or imagine
new words.

Etymgn system will include a palpable product in the end as an online web-application and
mobile application based on this etymological map.

2.2, Definitions

Some definitions of Etymgn jargon are provided.
e The Language Sea is the first view that the user is greeted with. It is a zoomed out
map of the most abundant words graphed together to make a sea like shape.

Figure 1 This figure depicts a wave-like pattern that will be like the Language Sea [1]

Figure 2 This figure is another clustered space that will be like the Language Sea. [1]

The Word Cloud is a local graph for words clustered close to one each other.

Life

€nglish

AiTrog

e Leyp

Profo-Indo-€vropean

Figure 2: This figure shows a local graph for the English word, “life”. Its origin is identified
to be "leyp” in the Proto-Indo-European language family, and two descendent words —one

2.3.

in Sanskrit and one in Greek— are given next to the origin word.

Functional Requirements

The system should provide etymological information for every word input by the
user.

Etymgn should cluster words according to root features during the deep learning
phase.

The system should show a default language map that contains all the origin
languages in the initial screen.

Etymgn should convert words into vectors in order to be used by the machine
learning algorithm (word embedding).

The system will allow user to search a specific word in the database

Etymgn will facilitate navigation through the language sea so that the user may
examine or zoom in to any word and word cloud.

The system will allow the user to choose a language area in the language sea for
the map to display.

The system will allow the user to search for random words.

2.4.

Etymgn will hallucinate/create new words when prompted by the user.

Etymgn must detect objects scanned by the user and find the etymologies of the
words corresponding to those objects. This will be done through object recognition.
The language sea will be displayed through augmented reality on the screen on
which the object that is scanned is displayed.

Etymgn should provide etymology of the word in the desired language in the
augmented reality feature.

The system should provide definitions of the words and pronunciation information

in addition to their origin information.

Non-functional Requirements

Performance

Since our word database is going to be massive in size we need to implement our program
in such a way that it will feel responsive.

Etymgn should spend less than 5ms when prompted to search for words.

Etymgn should not lag when the user navigates through the language sea. The
transitions from word cloud to word cloud must be smooth.

If a word does not exist in the Etymgn database, re-training of the algorithm
should be done under 5ms. The system should inform the user that the algorithm
is being re-trained.

Response time is crucial for the software, especially when database enlarges, it

should be able to give a user a desired map without taking an extensive time.

Correctness

Etymgn should give reliable output after proper analysis. A user should not receive
wrong matches.

Usability

2.5,

Etymgn should have a simple and straightforward user interface.
Etymgn should be easily navigated by the user.

Pseudo Requirements

Graph visualizations will be done using WebGL and Three.js.

darkNet and YOLO will be used for object recognition in the augmented reality
stage [2].

Python, Java, HTML, Swift will be used for implementation.

ARKit for iPhones, and ARCore for Android will be used for augmented reality
components and the online component will use WebAR.

Word2vec [3] algorithm cannot be used. A new algorithm must be created to
cluster words after turning them into vectors.

Machine learning algorithms will not run on user devices but on servers to
manipulate the large dataset.

3.

System Models

In this section of the report, models of the system are described in detail, these models
include use-case models, dynamic models and activity models. Furthermore, class and
object models are also described in this section. As the classes observed in the problem
domain are trivial, they do not involve various states, hence state diagrams are not
presented.

3.1. Use Case Model

In this section, use cases of Etymgn are presented in detail. Firstly, a UML use case
diagram is shown to demonstrate an overview of the relations of use cases with the actors
of the system. There are four different actors involved in the system. Main actor is the
user, which is followed by the administrator, another human actor. Two additional actors
exist which are word database and object recognition module. Etymgn will be outsourcing
the object recognition module as previously described, using the YOLO library [2].
Additionally, it will be relying on the Word Database as an actor to provide the required
word definitions and various stored data of the word. The use case diagram outlining all of
these aspects can be found below.

SearchLanguage SearchRandom
<;Ehen§|>> <<'egdena i

SearchWords

Word
Database

\—1
N
User)
_ AddWords Object
HallucinateWords Recognition
Module

<<ext.'end>>
ManageMap

ManagelLanguages

ManageWords

Administrator

Figure 3 This figure is the UML Use-Case diagram that shows the general relationships
between the actors and the use cases of the system.

3.1.1. Visionary Real-Life Scenarios

These scenarios represent the functionalities of the program in a more casual manner.
They help ordinary people understand the use cases of the program as well as help
facilitate the design of technical use cases by us.

Scenario name WordCluster

Participating Prof. Varol Akman: User
actor instances

Flow of events 1. Professor Akman is keen on learning new languages but has a
full plate with research and teaching. He wants to learn a new
language that would take as little effort and time as possible.
He discerns that learning a language with many similar words
as Turkish may accomplish that goal.

2. He decides to use the website called Et ymgn to search for
languages that are mapped closely to Turkish.

3. He goes to the Et yman website and is greeted with a cluster
map of words mapped closely together that have the same
origin.

4. He chooses to view the map where Turkish is located.

5. The map rotates to the Turkish words and searches around to
see words of languages that share the same etymologies and
thus have similar words to Turkish.

6. He finds that Persian is such a language and decides to learn
Persian.

7. He checks the website daily to find words that are clustered
between Turkish and Persian and learns those words.

Scenario name objectNameTracing

Participating Prof. UJur Dodrusédz: User
actor instances

Flow of events 1. While eating a pineapple slice, Prof. Ugur immediately
realizes that the word “pineapple” is different than its
equivalents in most other languages.

2. Intrigued by this thought, Prof. Ugur wants to explore more
about the origin of pineapple.

3. Using Etymgn, Prof. Ugur shows the pineapple to the
camera of his smartphone.

4. Prof. Ugur gets the origin information as an Augmented
Reality word cloud for the recognized pineapple.

Scenario name WordTracing

Participating Prof. Mehmet Koyutiirk: User
actor instances

Flow of events 1. Prof. Mehmet Koyutiirk is bored and is looking for a fun way
to kill some time on the internet. However, he does not want to
waste time.

2. He decides to use the new website he heard called Et yman.
He searches the word ‘kalem.’

3. He enjoys as she watches fancy animations turning a sea of
languages into a cloud-like figure zooming into the word
‘kalem’ appears on screen as the website does its job.

4. Then a map that looks like a cloud of words appears on the
screen. He sees that word ‘Kalem’ is connected to the words
’kalam’ and ‘calamus’.

5. He learns that origin of word kalem is coming from word
‘kamis’ which means ‘made from wood’. Also he learns that
kalam and calamus are from same origin as kalem.

3.1.2. Use Case Descriptions
Different than visionary scenarios use case descriptions involve system responses to

actor’s actions.

Use case SearchWords*

name

Participating User, WordDatabase

actors

Entry User wants to search when Et ymgn is open
condition

Exit condition

User gets the word cloud and decides to go back to the language sea.

Main flow of
events

1.

User opens Et ymgn.

2. Etymgn generates the language sea.
User enters a word to search.

4. Etymgn queries the word from WordDatabase.

5. Then zooms into the word in the language sea and

creates a word cloud for the searched word.

User looks at the word cloud and after getting the necessary
etymological information, decides to go back to the language
sea.

Alternative

flow of

events

User enters a word unknown to the system.

e FEtymen gets the definition and pronunciation
information for the word from a dictionary and trains
the machine learning algorithm with it and returns
the newly-generated word cloud.

After getting the word cloud, user jumps to a related word near
in the cloud.

e FEtymgn transitions into the word cloud that related
word.

Quality

requirements

While rendering the word cloud, Etymen uses the nearest word
relations in order to present the adequate number of relevant
words for the searched word.

When a word is not found, a message should be displayed as the
training of the machine learning algorithm may take time.

* The use case, SearchRandom, has a similar scenario as SearchWords. Instead of
searching for a specific word, the user prompts the system to search for any random word.
The system responds just as it does for SearchWords, except that it only searches words
that already exist in the database, so there will not be an alternative flow of events.

Use case name

manageMap

Participating Administrator, WordDatabase
actors
Entry condition Administrator wants to modify the arrangement of two word

nodes in the WordDatabase

Exit condition

Administrator successfully modifies the relation of two words.

Main flow of 1. Administrator opens Et ymgn.
events 2. Etymgn opens administration panel.
3. Administrator navigates through WordDatabase and finds
the two words she wants to alter.
4. Administrator can choose to delete a word, delete an
existing relation or create a new relation between words.
She can also strengthen or weaken the particular relation
between them.
5. Etymgn applies the queried operation to
WordDatabase
6. After making the wanted changes administrator saves the
changes and exits the administration panel.
Quality e While navigating through the WordDatabase user interface
requirements should help the navigator find his/her target with useful
filters and search tools.
e Altering relation between words should be simple and easy.

10

Use case name

ExploreMap

Participating User, WordDatabase
actors
Entry condition User wants to explore the words available in the Language

Sea and see their relation to other words.

Exit condition

User decides to stop exploring and closes the application

Main flow of 1. User opens Et ymgn.

events 2. Etymgn generates the language sea.
3. User navigates through the Language Sea.
4. User selects a word in a word cloud.

5. Etymen displays the information about the word that
it gets from the Word Database such as its origin,
meaning pronounciation and context.

6. After exploring enough words, word clouds, and
languages user closes the application..
Quality e While navigating through the WordDatabase user
requirements interface should help the navigator find his/her target with

useful filters and search tools.
e Information about the selected words should be presented
to the user in a nice and understandable manner.

11

Use case name

ScanObject

Participating User, AR Module, Object Recognition Module
actors
Entry condition User scans an object with their camera and wants to search the

word of the object on Et yman

Exit condition

User sees the word cloud on the scanned object and stops the
scanning.

Main flow of 1. User opens Et yman.
events 2. User points at object with camera and scans it.

3. Etymegn queries the object image from the Object
Recognition Module to search the word.

4. Etymgn queries the word from WordDatabase to get
its features to be trained by the machine learning
module.

5. Then zooms into the word in the language sea and
creates a word cloud for the searched word. It uses the
AR module to display this on the screen where the
object is being scanned.

6. User looks at the word cloud and after getting the necessary
etymological information and closes Et ymgn.
Alternative flow e User scans an object not recognizable to the system.
of events e FEtymgn displays an error message and prompts
user to properly focus camera more on the image.
Quality e Objects scanned are limited to the WordDatabase. If the word
requirements database does not have recognized object word, an error

message will be displayed.

12

Use case name

ManageWord

Participating Admin, WordDatabase
actors
Entry condition Admin wants to add a definition to the word

Exit condition

Admin sees the notification informing whether the word
definition was successfully changed.

Main flow of
events

1. Admin enters Et ymgn system as an admin.
2. Etymgn shows the page with menu for admins.
3. Admin clicks on magnifier which indicates a word search.

4. Meanwhile it is opening the WordDatabase
module for interactive search of words.

5. Etymen returns extended search bar indicating
it is ready to search a word.

6. Admin enters a word in search bar.

7. Etymgn shows the list of words starting with
the letters entered (for example, if user enters
“break”, the system shows “breakage”,
“breakdown”, “breakfast”, “breakthrough”, etc)
in alphabetical order under the search bar.

8. Admin chooses the desired word.

9. The system shows the page containing the data
on the word from WordDatabase. It includes the
definition section with multiple definitions,
pronunciation, related languages, etc.

10. Admin choose “edit definition” indicated as a pencil near
Definitions section.

11. The system returns the Edit Definition page
where the data on definition is shown and have
+, - and pencil symbols near related sections.

12. Admin chooses a + sign meaning “add definition™.

13. Et ymgn shows an empty bar under all existing
definitions.

14. Admin enters the new definition and clicks Save.

15. The system updates the definition by adding one
more definition to the word.

16. Et ymgn shows a notification saying that the
update was successful, if it was successful. If it
wasn’t for some reason, it shows a notification
stating that the word definition wasn’t updated.

13

Use case name

Managelanguage

Participating Admin, LanguageSea, lLanguageFamily, lLanguage
actors
Entry condition Admin wants to add a language to language sea

EXxit condition

Admin sees the notification on whether the language was
successfully added.

Main flow of 1. Admin enters Et ymgn system as an admin.
events 2. Etymgn shows the page with menu for
admins.
3. Admin enters the Language Sea.

4. Etymgn shows the page with language sea
options.

5. It shows the list of language families and the
list of languages within the families.

6. Admin chooses to add a new language.

7. The system shows the page containing the
blank sections needed to be filled about the
language, like the name of language, and
potions to choose, like language family it
belongs.

8. Admin fills the blank sections and clicks Save.

9. The system updates the language sea by adding
the new language.

10. Et ymgn shows a notification saying that the
update was successful, if it was successful. If it
wasn’t for some reason, it shows a notification
stating that the language was not added.

Alternative flow o Admin does not find a language family to which the
of events language should be added.

1. He/she chooses to add new language family in the
add new language page by clicking “add new
language family” at the end of language families
list.

2. Etymgn shows the empty text bar under
the “add new language family” asking
the name of new language family.

3. Admin types the name and presses Enter.

4. The system creates new language family
and shows it in the add new language
page under the the language families list.

14

Use case name HallucinateWords

Participating User, WordDatabase
actors
Entry condition User wants to hallucinate from a given word
Exit condition User decides to return to the language sea.
Main flow of 1. User decides to hallucinate a new word.
events 2. Etymgn asks whether the user wants to start

from a random word or a specific one.
3. User chooses to begin with a random word.
4. Etymgn selects a random word
5. Then zooms into the word in the language sea.
6. Etymen retrieves the features of the word from
WordDatabase to be used in the machine
learning (ML) algorithm.
7. Etymgn starts transfiguring the word into
different words based on the outputs from the
ML algorithm.
8. User looks at the development of new words, then decides
to go back to the general view of the language sea.

Alternative flow e User decides to start with a specific word.
of events e Etymen directly uses the given word in ML
algorithm instead of a random word.

Quality e Machine learning algorithm that will hallucinate based on
requirements the input text should use generative network algorithms.

15

3.2. Dynamic Model

In this section, the problem domain is analyzed in terms of its dynamic nature in order to
understand the required component actions. This dynamic behavior is represented by
several scenarios and their respective UML sequence diagrams in the following pages. As
the last dynamic model, an activity diagram is presented that goes over the actions taken
by the system during the onset of system lifecycle. As previously mentioned, state
diagrams are not represented for each class here, as most the classes in the object model
are simple ones without multiple states.

Scenario name Enter Etvmgn

Participating actor instances User

Scenario User starts the program by opening the window or mobile
application. The system displays the menu and generates
a language sea and performs some animation.

®
l :EtymonScreen :EtymonController

Uéer | |

start ()
displayMenu ()
startEtymon() -
i generateLanguageSea ()

< _________________________

J

getGraphics

-
>

ﬂ renderGraphics()

Figure 4 This is the UML sequence diagram for the Enter Etymon scenario.

graphics

R e R

updateScreen()

e

16

Scenario name Word Search

Participating actor instances User

Scenario User chooses to perform a search a certain word. The
system looks up for the word in the database. If there is
no such word, it generates it (by using definitions and
pronunciation data from dictionary). Then it zooms in to
the word in the language sea, generates word cloud of
that word, and shows it.

e

:User

searchWord("word")

[word == null]

generateWord (word)

addWord (word) B
S n

B e

zoomin (word) l

graphics
<

updateScreen ()

generateWordCloud (word)

graphics
<

updateScreen ()

Figure 5 This is the UML sequence diagram for the Word Search scenario.

17

Scenario name

Hallucinate

Participating actor
instances

User

Scenario

User chooses to perform a search a certain word. The system
looks up for the word in the database. If there is no such word, it
generates it (by using definitions and pronunciation data from
dictionary). Then it zooms in to the word in the language sea,
generates word cloud of that word, and shows it.

:User

selectHallucinate ()

selectRandom ()

promtOptionsHallucinate () !

getRandomWord () N
> <<create>>

word 000 .3 a—
<_ ord

zoomin (word)

. >
P graphics . U

updateScreen ()

hallucinate(word)

A 4

getWordDetails (word)

rdDetails |
R wordDetalls |

setParameters (wordDetails) n

hallucinateML (word, wordDetails)

getGraphics

renderGraphics()

graphics

updateScreen()

Figure 6 This is the UML sequence diagram for the Hallucinate scenario.

18

Scenario name

Scan Object

Participating
actor instances

User

Scenario

User uses a phone application version and chooses scan object option.
The system first opens the camera and then using the object
recognition module scans and recognizes the object that is pointed by
user with camera. Object recognition module returns the name of the
object. The system then searches the word in database and shows it
on the object using augmented reality module. Then it zooms in to
that word on language sea, generates a word cloud, and displays it
still using AR module.

selectScanObject ()
openCamera ()

<

scanObject()

recognizeObject (image)
word
<------_----.4--.-----l

searchWord ("word")

word M

R S

No 1 - Search
Word.

t showWordName (word) 5 B
E ral thS :
D S ik S —

zoomInAR (word)

zoomin (word) f . :
graphics H
graphics [§| €-=-======mmmmmmme e e -
<
updateScreen ()
generateWordCloudAR (word) b
> camera is open ; : ;
generateWordCloud (word) N :
b GrENES
graphics < ' ' U
<_ __________________ ' '
updateScreen () !
etumn :
oreum

Figure 7 This is the UML sequence diagram for the Scan Object scenario.

19

if word is not found

Figure 8 This figure shows the event flow of Etymgn, it is the UML activity diagram of the system.

20

3.3 Object & Class Model

In this section, relations between objects of the Etymgn System are shown using an UML class diagrams. Attributes and methods of the
various classes are represented.

Controller

+ startEtymon()
+ searchWord(Word): Word
+ trainMLModule()

+ renderGraphics()

+ hallucinate(Word)

+ hallucinateML{ Word, List)
+ getWordCloud(): WordCloud 1
+ getRandomWord(): Word . | controls
+ getLanguageFamily(): LanguageFamily
+ generateLanguageSea(): LanguageSea
1| + generateWord(Word)

+ generateWordCloud(Word)

+ zoomin(Word): Graphics

generates

+ addWord(Word): Graphics - definition
+ openCamera() - context
+ scanObject() - features
+ searchWord() - pronunciation
+ zoominAR() - languageFamily
+ generateWordCloudAR()
! /

* consists of

controls

- mostAbundantWords
- languages

- word

1 - related Word
controls N

- ancestor
- descendant

. <~ | - mostAbundantWords
consists of
1

* consists of

Figure 9 This figure shows the UML Class diagram of the system. The main component is the controller and the other classes are trivial
representations of actual objects in problem space.

21

3.4.

User Interface

This section gives the details of the user interface of the Etymon system. The overall walkthrough of
the user interface is given in Figure 10. Based on these, screenshots of several screens are presented
in the following figures.

.—>
/—'

Return to Language Sea Screen

Select
"Random" or

Select "Search Word" input word)

Language Sea Search Options Quit Etymon
S ren anh — Word Cloud View 9
Return to Language Sea
Screen
Select "Hallucinate" Select QultE
Hallucinate a Word L8t Etymon
L Options Pane — = Hallucinate View
Return to Language Sea Screen J
Return to Language Sea Screen
Select Scan Image After taking the picture Quit Etymon
9 Scan Image View 9 o Ws{:wCIoud y

)

Return to Language Sea Screen

Figure 10 This is the diagram for the UI transitions based on input from user.

22

ETYMON

SEARCH A WORD

SCAN OBIJECT

Figure 11 Etymgn’s welcome page. From this panel you can go to search word, hallucinate
and help panels. You can also “Scan Object” option to open your camera and use
augmented reality functionality.

23

GET STARTED

Surf the Sea of Languages, explore Word Clouds,

find the etymons.

~ /

+

SKIP NEXT

Figure 12 This figure represents the help panel Etymgn provides to the user. Slides of
panels will help user to learn how to use the application efficiently.

24

HALLUCINATE

Enjoy the progress as Etymgn

conceives new words

ngo Purovszciks Boll Mus

Firfirfirpo Balibombom

r Pampovkifffffs Samsi Kapp

GO BACK

Figure 13 In this panel Etymgn will show random words from same word cloud

—etymologically similar words— and will hallucinate, imagine new words from the words it

selected and present it to the user.

25

—

X H

&

POINT \
THE

CAMERA

TOWARD S

\ AN L
’AQBJE%R:

Figure 14 This figure represents the augmented reality functionality of Etymgan.

26

References

[1] C. Diagne and N. Barradeau, Free Fall, https://artsexperiments.withgoogle.com/freefall/wave.
[Accessed: 09-Oct-20171].

[2] J. Redmon, YOLO: Real-Time Object Detection. [Online]. Available:
https://pjreddie.com/darknet/yolo/. [Accessed: 09-Oct-2017].

[3] “Word2vec,” Wikipedia, 26-Sep-2017. [Online]. Available:
https://en.wikipedia.org/wiki/Word2vec. [Accessed: 09-Oct-2017].

[4] Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by Bernd
Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

27

